Authorship Identification of Source Codes
Written by Multiple Authors
Using Stacking Ensemble Method

Parvez Mahbub

Naz Zarreen Oishie

=

Computer Science and Engineering Discipline

Velok

Khulna University
Khulna — 9208, Bangladesh

Authorship Identification of Source Codes
Written by Multiple Authors
Using Stacking Ensemble Method

Parvez Mahbub Naz Zarreen Oishie
Student ID: 150204 Student ID: 150201

=

Computer Science and Engineering Discipline

Velok

Khulna University
Khulna — 9208, Bangladesh

Khulna University

Computer Science and Engineering Discipline

The undersigned hereby certify that Naz Zarreen Oishie and Parvez Mahbub have read
and recommended to the Computer Science and Engineering Discipline for acceptance
of a thesis entitled “Authorship Identification of Source Codes Written by Multiple
Authors Using Stacking Ensemble Method” in partial fulfillment of the requirements

for the degree of Bachelor of Science in Computer Science and Engineering (CSE).

Date: January 23, 2019

Dr. S.M. Rafizul Haque Thesis Supervisor
Professor
Computer Science and Engineering Discipline

Khulna University

Dr. Kamrul Hasan Talukder Second Examiner
Professor
Computer Science and Engineering Discipline

Khulna University

Dr. Md. Anisur Rahman Head of the Discipline
Professor
Computer Science and Engineering Discipline

Khulna University

Acknowledgement

First of all, we would like to thank Almighty Allah for giving us mental and physical
strength to complete our thesis properly. We would like to express our sincere grat-
itude to our supervisor Dr. S.M. Rafizul Haque, Professor, Computer Science and
Engineering Discipline, Khulna University, for his co-operation, suggestion, guidance,
and continuous encouragement through the course of the study.

We are grateful to our second examiner Dr. Kamrul Hasan Talukder, Professor,
Computer Science and Engineering Discipline, Khulna University, for reviewing our
thesis and giving us thoughtful suggestions to improve it.

Along with our thesis supervisor and second examiner we would like to espe-
cially thank Dr. Manishankar Mondal, Assistant Professor, Computer Science and
Engineering Discipline, Khulna University, for guiding us and providing continuous
feedback with his excellence in the discipline of software engineering.

We would like to acknowledge the support of our honorable teachers of the disci-
pline throughout the path with their encouragement and suggestions. We also thank
our parents for their encouragement, support and always being the source of our

moral strength.

i

Abstract

Source code authorship identification is the issue of identifying the author of a source
code based on the experience of previous source codes. It has vast importance in pla-
giarism detection, digital forensics, and several other law enforcement issues. How-
ever, when the number of writers of a source code is more than one, typical author
identification systems no longer work. In this thesis, we have implemented a source
code author identification system using stacking ensemble classifier that can predict
the authorship of source codes even when the number of authors is more than one.
Our stacking ensemble system is built upon several deep neural networks, random
forests and support vector machine classifiers. We have shown that when identifying
the author in such case, a single classification technique is no longer sufficient and
using a deep neural network based stacking ensemble method can increase the accu-
racy significantly. We have compared our work with several other works that only
deals with source codes that are written by exactly one author. The experimental
result shows that even after using source codes written by multiple authors, we have

achieved accuracy pretty close to the related works.

Keywords: Source Code Authorship Identification, Multiple Author, Deep Neural
Network, Random Forest, Support Vector Machine, Stacking Ensemble

il

Contents

1 Introduction

2

1.1 Problem Definition
1.2 Motivation
1.3 Objective
1.4 Chapter Outline
Background
2.1 Machine Learning
2.2 Feature Extraction
2.2.1 Code Metric
2.3 Normalization
2.4 Deep Neural Network
2.4.1 Activation Function
2.4.2 Loss Function
2.4.3 Optimizer
24.4 Overfitting
2.5 Random Forest
2.6 Support Vector Machine
2.7 Ensembling Methods

2.7.1 Stacking Ensemble Method

v

ot ot W N =

© © I N

3 Related Works 21
3.1 Text Based Approaches, 21
3.2 Metric Based Approaces 22

4 Awuthor Identification of Source Codes Written by Multiple Authors 24

4.1 Dataset 26
4.2 Metric Extractiono oo 27
4.3 Base Classifierso 29
4.3.1 Deep Neural Network 30

4.3.2 Random Forest 31

4.3.3 Support Vector Machine 31

4.4 Meta Classifiers 31
4.5 Trainingo 33

5 Experimental Results 35
5.1 Experimental Setupo 35
5.1.1 Toolset 35

5.1.2 Parameters Lo 36

5.2 Metrics 36
5.2.1 Accuracy 36

5.2.2 Fl-Score 36

5.3 Results of The Base Classifiers 37
5.4 Results of The Meta Classifier 37

6 Conclusion 40
6.1 Future Direction L 41

List of Tables

4.1 Number of authors and contributors for each class 27
4.2 Set of code metrics and descriptions 28
5.1 Accuracy of the base classifiers 38
5.2 The confusion matrix of for the testing dataset 38

5.3 Comparison among the methods for source code author identification 39

vi

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11

4.1
4.2
4.3
4.4
4.5

Training phase of a machine learning algorithm
Testing phase of a machine learning algorithm
High level overview of a deep neural network
Stochastic gradient descent algorithm
Comparison of Adam with other optimizers
Adam algorithm
Pictorial illustration of how regularization prevents overfitting

Overview of random forests
Overview of support vector machine
Overview of stacking

Stacking algorithm oo

Block diagram of the architecture of the stacking ensemble method

Block diagram of proposed author identification approach
Block diagram of the neural network used as base classifier
Block diagram of the neural network used as meta classifier

Steps for training the stacking ensemble system

vil

11
13
14
15
16
17
18
20
20

Chapter 1

Introduction

Source code author identification is a major research topic in the field of software
forensics. It has many uses such as plagiarism detection, law enforcement, copyright
infringement etc.[1, 2]. Zobel[3] has mentioned that selling solution of assignments to
multiple students is a common source of plagiarism. This can be stopped if all of the
assignments from the same source are identified by the same author. Frantzeskou[4]
mentioned that source code author identification is useful against cyber attacks in
the form of viruses, trojan horses, logic bombs, fraud, credit card cloning, and au-
thorship disputes or proof of authorship in court. There are certain patterns that
developers sub-consciously reflect in their codes based on their particular coding style
while still following the guidelines, standards, rules, and grammars of a language or
framework[2]. These pieces of information can be used to identify the author of the
source code.

In recent years, open source software development has entered a new era. A
lot of big companies like Google, Microsoft, and many others are maintaining their
projects open source. Alongside, small and mid-level projects are being written by a
group of authors. In these cases, trivial author identification schemes no longer work.
When someone contributes to an open source project, the writing style of the original

author of the source code is no longer unique and it makes the author identification

task harder. Even worst case is when a project is equally contributed by a number of
authors. The writing style is then the aggregation of all the authors. We aim to solve
this problem and make an author identification system that can identify the author

of a source code even when it is contributed by more than one author.

1.1 Problem Definition

Authorship identification is the task of having some samples of code for several pro-
grammers and determining the likelihood of a new piece of code having been written
by each programmer[5]. As the name suggests, authorship identification of source
codes written by multiple authors is identifying the author-label when the number of
authors of source code is more than one. This can be of two kinds. Firstly, the source
code can be written by mostly one author and have small contributions from several
other authors. This is what happens in typical open source projects. Alternatively,
source codes can be directly written by a group of authors and have a roughly equal
contribution from each of them. This is what happens when a team is assigned to a
project and the members work in a collaborative fashion.

Typical author identification tasks often assume each of the source codes is written
by exactly one author. However, nowadays a vast amount of software and projects are
being maintained open source. This enables a single source code to be contributed by
a large number of authors. In the case of contributions, the main author has a unique
writing style and when some other person contributes to the code, the writing style
deviates from the original author. As a result, author identification becomes harder.
Alongside, with the help of several version control systems and team collaboration
software like git or SVN, most of the projects are currently being written by a group
of authors. In this thesis, we consider this group of authors as a single class-label.
As a result, to identify the class-label(author) of source code we need to identify the

aggregated writing styles of the group of authors.

Therefore, author identification of a source code written by multiple authors is
much harder than typical author identification systems that aim source codes written

by only one author.

1.2 Motivation

Authorship identification of source code has a vast application area including plagia-
rism detection, authorship dispute, software forensics, malicious code tracking, crimi-
nal prosecution, software intellectual property infringement, corporate litigation, and
software maintenance[l, 6-9].

Author identification techniques can be used to prevent source code plagiarism[10].
By determining if a suspect code really was written by the claimed author, it can be
concluded that if that code is plagiarized or not[8]. Students often borrow code
from classmates, friends, web or home tutor[3, 7]. If an author identification system
is trained using source codes from all authors of an academic institution, a code
borrowed from classmates or friends can easily be detected. Even in the case of
copying from the web or home tutor, what is impossible to be in the scope of source
code sampling, an authorship identification system can check the likelihood of writing
a code for a particular author. This can be another approach to detect plagiarism.

In the case of authorship dispute, authorship identification can be a solution.
Given the source code and the candidate owners, the likelihood of each candidate of
being the author of the source code can be determined[2]. From this, the most likely
candidate can be identified as the author of the reference code.

Author identification has a vast use in software forensics. Software forensic is
analyzing software to identify the characteristics of the corresponding author for use
in forensic activities. Most of the software forensic activities aim to identify the
author of a malicious code left in an infected device after a vulnerable attack[7, 9].

Kothari[2] identified that author identification is useful for detecting the author of

malicious codes. Given a database of known malware and their authors, when a
new malware appears, the likelihood that it is written by an author who previously
authored such code can be determined.

Software intellectual property infringement activities like code cloning can be de-
tected using author identification. If a company suspects a former employee of vi-
olating the no-compete clause of the contract, they can use author identification to
determine if that particular employee wrote the leaked codel8].

Software companies can also use authorship identification system to keep track
of programs and modules for better maintenance[9]. A major problem is software
industries are maintaining legacy code. Legacy code is known as source code that is
no longer supported. So software companies convert it into modern software language
and platform. A company with a number of developers, the developer whose coding
style matches the most with the original author of the legacy code may be most
productive to maintain the code.|8]

It is true that there exist several challenges for source code author identification
than that of natural language and speech recognition. However, Frantzeskou[4] opin-
ionated that still being much more restrictive and formal than spoken or written lan-
guage, source codes inhibit a large degree of flexibility. According to Shevertalov[11],
using differences in the way programmers express their idea, their programming style
can be captured. This programming style, in turn, can be used for author identifica-
tion.

Although, a large number of works already done regarding source code author
identification, according to Frantzeskou[l], the future of source code author identifi-

cation is in collaborative projects to which we aim at.

1.3 Objective

We designed a stacking ensemble method based author identification system for source
codes written by multiple authors. An ensemble method is a machine learning method
that passes the output from several machine learning classifiers, known as base clas-
sifiers, to the input of another machine learning classifiers know as meta-classifier.
Ensembling methods often show better accuracy than any of the base classifiers.

The main objectives of the work are —

Finding a better way to predict the class-label(authors) of a new source code
written by more than one author.

Choosing a sufficient machine learning method that can predict the class-label
of such source codes.

Reducing overfitting to the training dataset.

Keep the system programming language independent.

1.4 Chapter Outline

This thesis is organized into six chapters. Each of them contains different aspects of
our thesis. These chapters are briefed below.

Chapter 1: This chapter provides an introduction to our thesis which includes the
briefing of our work, the definition of the problem we have worked on, the motivation
behind our work and the objective of our thesis.

Chapter 2: This chapter contains the theories and concepts regarding this work
which includes machine learning, deep neural network, support vector machine, ran-
dom forests, and ensemble methods.

Chapter 3: This chapter contains the related works in recent years. Their limi-
tations are also discussed in this chapter.

Chapter 4: In this chapter, the method for author identification of source codes

written by multiple authors is discussed. How stacking ensemble method can be

used for source code author identification and the building blocks of the method are
included here. This chapter also includes the details of the dataset that is used in
this thesis.

Chapter 5: This chapter contains the experimental results of our work. The tools
we have used during the implementation of our work is listed here. The comparison
of our work with several other related works is also shown here.

Chapter 6: Finally, in this chapter, the conclusions and the future directions are

enlisted.

Chapter 2

Background

Like all other machine learning applications, source code author identification requires
to extract features from samples, split the data into training set and testing set, feed
the training set to a machine learning model and train it, and finally evaluate the
performance of the model using testing set. Along with all these common features,
source code author identification task requires some problem specific tasks as well.
Features of the source codes are basically categorized into two types — n-gram and
code metric. Extracting them are two completely different processes. Caruana[l12]
showed that in higher dimension, random forests, deep neural networks(DNN) and
support vector machines(SVM) outperform most other machine learning classifiers.
However, when a single machine learning classifier does not perform good enough, an

aggregation of several classifiers can be used. This technique is called ensembling.

2.1 Machine Learning

Machine learning is a field of artificial intelligence which deals with statistical tech-
niques that give computers the ability to learn from data without being explicitly
programmed|[13]. Tom Mitchel gave a famous and more formal description of machine

learning — “A computer program is said to learn from experience E with respect to

some class of tasks T and performance measure P if its performance at tasks in T, as
measured by P, improves with experience E”[14].

In general, a machine learning algorithm is used to map some input features to the
output using a non-linear transformation. For example, we can consider a rice-variant
identifier problem. Say, the input features for this problem are the length of the leaf,
the width of the leaf and color of the leaf. The output is to which variant of rice the
given leaf belongs to. A machine learning algorithm can generate a function that can
map the input features to the corresponding output labels. This function is known
as a model or trained model. After learning the mapping, the model can even map a
label without previous experience of that particular feature set.

Figure 2.1 shows the flow chart of the training phase of a machine learning al-
gorithm. Given the input and output, a machine learning system will extract the
features and feed them to the machine learning algorithm along with corresponding

labels. The algorithm will output a trained model.

Training Feature RS
Input Extractor Trained

Training Model

Label

Figure 2.1: Training phase of a machine learning algorithm

Figure 2.2 shows the block diagram of the testing phase of the performance of a
machine learning algorithm. In this phase, a separate set of input features are fed
to the trained model. The trained model predicts the label for each feature set and
the predicted label are matched with the actual label to calculate the accuracy of the

model.

Predicted

Feature
Features Labels

Extractor

Accuracy
Test

labels

Figure 2.2: Testing phase of a machine learning algorithm
2.2 Feature Extraction

Feature extraction is the first and one of the most important tasks in machine learning.
For any input, it is required to extract the proper features that are directly responsible
for the corresponding output label. Let’s reconsider the rice-variant identification
problem. If the input is images of the rice-plants, then firstly it is required to detect
the position of the leaves from the images. Later, using the position of the leaves
the length, width and color of the leaves can be extracted. Finally, the extracted
features will be fed to the machine learning algorithm. A note to remember that for
a particular input, a large number of features can be extracted. However, only a very
few of them are responsible for the corresponding output label. These characteristics
made feature extraction an iterative process which requires several iterations of the

whole training phase to find the best feature set.

2.2.1 Code Metric

Source code metric or simply code metric is a measurement that provides a summa-
rized insight of the code. For example, ‘inheritance depth’ is a source code metric
which calculates the depth of inheritance of a particular class. No doubt, it can
significantly give an idea of the writing style of the author. Several source code au-
thor identification approaches use code metrics as the feature of machine learning

algorithm(8, 9, 11, 15].

2.3 Normalization

Normalizing the data attempts to give all attributes an equal weight. Which is to
scale the data within a specified range.

In our thesis, we have used Z-score normalization, which is a measure of the
number of standard deviation a raw score is far from the mean of the dataset. To
perform Z-score normalization, the mean and the standard deviation of the dataset
are needed to be calculated. If the mean is ;1 and the standard deviation is o of the

dataset, then
Ti — [
o

2z = (2.1)

where x is the raw data, z is the normalized value and ¢ denotes the data point. After
performing Z-score normalization, the mean of the data becomes 0 and the standard

deviation of the data becomes 1.

2.4 Deep Neural Network

The deep neural network is a machine learning algorithm which can be used for
classifying data into classes. A deep neural network is composed of an input layer,
followed by several hidden layers, followed by an output layer. Figure 2.3 shows a
high-level overview of a DNN.

A layer in a neural network is composed of a number of units. A unit is simply a
mathematical function that takes input from a number of units in the previous layer,
performs a simple mathematical or logical operation and then provides its output
to a number of units in the next layer. An input layer is a layer that takes input
from an external system and provides input to the first hidden layer. It has the same
number of units as the size of the input. A hidden layer is a layer of which each unit
is connected to each unit of the previous layer and each unit of the next layer. An

output layer simply takes input from the last hidden layer and provides the output

10

of the neural network to an external system. The number of units in an output layer
is the same as the number of classes in case of multi-class classification problem and

one in case of binary classification or regression problem.

S
%
K\‘P’\‘

=/

R
(X

:\\}')

',‘
&

5
4

)

. output layer

hidden layer 1 hidden layer 2

input layer

Figure 2.3: High level overview of a deep neural network

2.4.1 Activation Function

Along with a mathematical function, each unit in a DNN optionally performs a logical
function known as the activation function. An activation function takes the output
of the mathematical function of the unit and outputs a value that can be used as
input for the units in the next layer. This output can be either discrete or continuous

value.

Rectified Linear Unit(ReLU)

Rectified Linear Unit(ReLU) activation function is a widely used and popular activa-
tion function in neural networks. It’s primary plus points is its biological similarity,
training speed of neural networks, simplicity and the function’s derivative which can
be easily computed and does not suffer from the problem of vanishing gradient. There-

fore, ReLLU will be used as the activation function in the hidden layers. ReLU has a

11

range of zero to infinity. For the inputs which are less than 0, the output is zero and

the inputs which are greater than 0, the output is equal to the input.

a = ¢(z) = maz(z,0) (2.2)

SoftMax

As the activation function of the output layer of the multi-class classification problem,
softmax is the state of the art. Its output corresponds to confidence for each class of
being the actual class for a given feature set. The standard softmax equation can be

written as,
Zj
a;j =0(z); ¢

T ZkK:I ek

where z; is the output of i** unit of the output layer, a, is the output of activation

(2.3)

function for the i** unit of the output layer, and K is the number of units in the
output layer.

This function will be used as the activation function of the output layer.

2.4.2 Loss Function

At the training phase, to evaluate the effectiveness of training a loss function or
cost function is used. It is a measurement of the distance between the predicted
output and the actual output. The less the output of the loss function, the better
the effectiveness of training. The goal of the neural network is to minimize the loss
function. However, if the loss function is not convex shaped, the neural network may
stick to a local optimum. Categorical cross-entropy is a convex shaped loss function

for the multi-class classification problem, which can be defined as

L= ti;log(pi) (2:4)

J

12

where ¢ are the targets, ¢ denotes the a feature vector, j denotes the class and p; ; is

the probability of ¢ belongs to class j.

2.4.3 Optimizer

To improve or optimize the performance of the neural network, that is minimizing

the cost function, an optimizer is used.

Stochastic Gradient Descent

Stochastic Gradient Descent(SDG)[16] is an optimizer which iteratively minimizes the
loss function. Instead of as a single group, or training set order, samples are selected
randomly in this process. That’s why the method is named stochastic.

The basic idea behind SGD is to compute an exponentially weighted average of
the gradients of the loss, and then use that average gradient to update the weights
of the connection between units from different layers. In figure 2.4, the algorithm is

shown.

Require: Learning rate 7.

Require: Initial parameter 6.

while Stopping criterion not met do
Sample a minibatch of m examples from the training set {z", ... 2™},
Set g =0
for i =1tom do

Compute gradient estimate:
g g+ VoL(f(27;0)),y";0).

end for
Apply update: 6 < 6 — ng
end while

Figure 2.4: Stochastic gradient descent algorithm

13

Adaptive Moment Estimation

Adaptive moment estimation (Adam) is an algorithm for first-order gradient-based
optimization of stochastic objective functions. It is based on adaptive estimates of
lower-order moments. From estimates of first and second moments of the gradients,
This method computes individual adaptive learning rates for different parameters.
Kingmal[17] showed that Adam outperforms all the other optimizers currently avail-
able. Figure 2.5 shows how fast Adam optimizes the model with iteration than other

optimizers. The algorithm of Adam is shown in figure 2.6.

10! MMIST Multilayer Neural Network + dropout
\ — AdaGrad

RMSProp

SGDONesterov

=
..‘_.-"'
||

AdaDelta

braining cost

o S0 100 150 200
iterations owver entire dataset

Figure 2.5: Comparison of Adam with other optimizers

2.4.4 Overfitting

The goal of a machine learning algorithm is to generate a model that will be generic
to all feature sets in the problem domain. However, a finite number of data are used
during the training of a model. As a result, it is quite common that a model performs
very well for the data used in the training phase, but inhibits poor performance for
new data. Such a situation is known as overfitting. As the name says, a situation,

where the model is overfitted to the training data, is known as overfitting. In this

14

Require: o: Stepsize
Require: 31, 32 € [0, 1): Exponential decay rates for the moment estimates
Require: f(#): Stochastic objective function with parameters ¢
Require: #y: Initial parameter vector
mg < 0 (Initialize 1* moment vector)
vo + 0 (Initialize 2™ moment vector)
t < 0 (Initialize timestep)
while 6, not converged do
t—t+1
gt + Vg fi(0:-1) (Get gradients w.r.t. stochastic objective at timestep t)
my <— 31 -my—1 + (1 — B1) - g: (Update biased first moment estimate)
vg < B2 vi—1 + (1 — B2) - g7 (Update biased second raw moment estimate)
e + my¢/(1 — 1) (Compute bias-corrected first moment estimate)
U; ¢ v /(1 — L) (Compute bias-corrected second raw moment estimate)
O < 0;—1 — a - s /(V/0r + €) (Update parameters)
end while
return 0; (Resulting parameters)

Figure 2.6: Adam algorithm

case, the model has a high bias towards the training data. Careful considerations are
needed to be made while training the data to prevent the model from having a high

bias.

Regularization

As mentioned above, a machine learning algorithm performs a non-linear transforma-
tion from the input features to the predicted output. If the transformation becomes
too non-linear, it loses the generosity and fits too much on the training data. As
a result, it performs poor for newer data. Thus, necessary actions should be taken
that prevents the model from being too much non-linear. Regularization does this
job. Figure 2.7 shows a pictorial illustration of how regularization prevents the model
from being overfitted.

Srivastava[18] proposed a relatively new regularization technique dropout. He

showed that a neural network with dropout outperforms a neural network without

15

Model without regularization Model with regularization

Figure 2.7: Pictorial illustration of how regularization prevents overfitting

dropout. The idea behind dropout regularization is shutting down a number of units
from a particular layer randomly in every iteration. The units are to be shut down are
different in different iterations. As different units of a layer are activated by different
features, shutting a unit prevents overfitting for that particular feature. Finally, as a

whole, the neural network is prevented from being overfitted.

2.5 Random Forest

Decision trees are used widely as classifier because of their high execution speed.
But, the trees are designed to perfectly fit all samples in the training set which causes
overfitting. Tim|[19] introduced a method of constructing tree-based classifier whose
capacity can be extended in order to increase the accuracy of both training set and
test set.

Random forest is an ensemble learning method where each classifier in the ensem-
ble is a decision tree classifier. This collection of classifiers is called a forest. During
classification, each of the decision trees gives their votes and the result is based on the
majority of votes. Figure 2.8 gives an overview of random forest ensembling method.

The set of attributes for a particular tree in the forest is randomly selected. The

size of attribute subset is log, N + 1 where N is the size of the attribute set.

16

Instance

Random Forest f,,.w*”’ .'I “ER_HE
""-\.____-\-\-\-\i
e
aanm]f
ébdd ‘Es}‘
Tree-n
Class-A Class-B Class-B

I
| Majority-Voting J |

Final-Class |

Figure 2.8: Overview of random forests

To construct the decision trees, Classification and Regression Tree(CART)[20] and
C4.5]21] algorithms are used. Caruana[l2] showed that in general for classification

problems, random forest performs most consistently in all dimensions.

2.6 Support Vector Machine

Support vector machine(SVM) is a machine learning classifier which classifies data
into different classes using a linear optimal separating hyperplane. This hyperplane
is also known as a decision boundary.

SVM finds this hyperplane or decision boundary using support vectors and mar-
gins. Training points that are nearest to the separating function are known as the
support vectors. The width that a decision boundary can have before hitting a sup-
port vector is known as margin. To classify the data, many hyperplanes can be
produced. The optimal one maximizes the margins of the training data. This means
it stays as far as possible from the support vectors of all classes.

Figure 2.9 shows an overview of SVM for linearly separable data. If the dataset

is not in linearly separable feature space, then it is mapped into a higher-dimension

17

SupportVectors [l @

A 4
\ Class 1
\
b [+
%]
o
Class 2 m
&) Wix+b=1
\
@ o \
5
. :
Wix+b=0
WTx+b=—1% =

Figure 2.9: Overview of support vector machine

feature space using a kernel function where the dataset is linearly separable. In our
thesis, we have chosen the radial basis function(RBF) kernel as our kernel function.
Vert[22] defined The RBF kernel on two samples x and 2/, represented as feature
vectors in some input space, as

[l — 2|

K(z,2') = emp(—T‘Q) (2.5)

where (||x — 2'||)? is the squared euclidean distance between two feature vectors.
o is a free parameter. According to Wang[23], The neural network minimizes the
empirical training error. As a result, there exists a number of weak points of the
network. The existence of many local minima and how to choose the number of
hidden units are some of them. On the contrast, the SVM aims at minimizing an
upper bound of the generalization error through maximizing the margin between the

separating hyperplane and the data.

18

2.7 Ensembling Methods

By combining several methods, ensembling method helps to improve the results of
machine learning. An ensemble is often more accurate than any of the single classifiers
in the ensemble. According to Maclin[24], an ensemble consists of a set of individ-
ually trained classifiers whose predictions are combined, while classifying instances,
by the ensemble method. These meta-algorithm combines several machine learning

techniques into one predictive model. It tries to
e Decrease variance(Bagging)

e Decrease bias(Boosting)

e Improve prediction(Stacking)

In our thesis, we have used stacking in order to improve our prediction perfor-

mance.

2.7.1 Stacking Ensemble Method

Aggarwal[25] stated, stacking is an ensemble learning method which combines multi-
ple classifications using a meta-classifier.

In figure 2.10 we can see that the complete training set is used to train the indi-
vidual classification models. Then based on the output, which is meta-features of the
individual classification models in the ensemble, the meta-classifier are fitted. The
meta-classifier can either be trained on the predicted class labels or probabilities from

the ensemble. The algorithm of stacking is shown in figure 2.11.

19

Training set

\ Y]
l l training l %
=
Classificati o
m:fjsellsca o G G ces o <j &
l l prediction l l
Predictions P, P, . . P o

R R

Meta-Classifier

}

Final prediction P;

Figure 2.10: Overview of stacking

Input: Training data D = {x;,y;}"" | (x; e R", y; €)
Output: An ensemble classifier H
1: Step 1: Learn first-level classifiers
2: fort < 1to 7T do
3 Learn a base classifier h; based on D
4: end for
5. Step 2: Construct new data sets from D
6: for i < 1tomdo
7 Construct a new data set that contains {x.,y; }, where x; = {h;(x;), ha(x;), ..., hr(x;)}
8: end for
9: Step 3: Learn a second-level classifier
10: Learn a new classifier A’ based on the newly constructed data set
11: return H(x) = h'(hy (x),ha(x),..., hr (X))

Figure 2.11: Stacking algorithm

20

Chapter 3

Related Works

Numerous works are available on source code author identification. They used a
variety of features and classifiers. However, very few of them use machine learning
techniques to identify the author of source codes. In the following sections, the
background studies regarding this topic and related works are discussed.

According to f)uraéik[%], there are several approaches to identify the author of
source code that can be divided into three levels. The first one is text-based and uses
plain text as an input. The second level is token or metric based. The top level is

model-based and uses models to represent source code.

3.1 Text Based Approaches

The first approach, which treats source code as plain text, is a form of natural lan-
guage processing. This approach cannot make use of the programmatic structure of
source code.

Frantzeskou et al.[1] proposed a technique called Source Code Author Profiles
(SCAP) for author identification. They generated byte level n-gram author profile. To
identify the author of source code, it’s calculated profile is compared with previously

calculated author profiles. They identified the author with the least dissimilar profile

21

as the author of the source code. Burrows[27] mentioned, the SCAP method truncates
the author profiles that are greater than the maximum profile length. This causes a
bias towards the truncated profiles. To overcome the problem, the maximum profile
length needs to be set to a large number that prohibits profile truncating. Therefore,
a statistical analysis of the author profiles is required.

Burrows et al.[28] proposed an approach using information retrieval. They gener-
ated n-gram tokens from the source codes and indexed them in a search engine. Then,
any source code can be queried for its author. In querying process, n-gram token of
queried source code is generated and matched with author profiles. As query-result,
a ranking list of all authors will be returned and the true author will top the ranking.

This approach could identify the author of source code with 67% accuracy.

3.2 Metric Based Approaces

Frantzeskou[1] pointed out that metric-based author identification is divided into two
parts. The first part is extracting the code metrics that represent the author’s style
and the second part is using those metrics to generate a model that is capable of la-
beling a source code by corresponding author name. However, the main disadvantage
of this traditional approach is a vast amount of time is required to gather all possible
metrics and examine to choose only the metrics that are responsible for differing the
authors’ style. This causes less attention to improving the efficiency and effectiveness
of the proposed model.

Lange and Spiros[8| proposed a source code author identification technique using
code metrics histogram and genetic algorithm. They assumed that the code metrics
histogram should vary from author to author as of their coding style. From a number
of source code metrics, an optimum set was selected using genetic algorithms. Then
those metrics were used as input for the nearest neighbor classifier. This system was

capable of identifying the author of the source codes with 55% accuracy. According

22

to Yang[6], some of the features of this paper are unbounded. For example, the
intendation category.

Shevertalov el al.[11] proposed a technique based on genetic algorithm. Firstly,
the metrics are extracted from the source code. Then, they made a histogram from
the source code metrics. This categorized histogram is sampled using the genetic
algorithm. Finally, the author profile is produced using the categorized histogram
samples. They tested the system with file input and project input. For files, they
achieved 54% accuracy and for projects, they achieved 75% accuracy. Yang[6] men-
tioned that the details of the final feature set are not mentioned in this paper. So,
the feature set is non-reproducible.

Bandara and Wijayarathna[l5] used the deep neural network for source code au-
thor identification. Firstly, they converted the source codes into tokens or metrics.
Their chosen tokens are identical to Lange et al.[8]. Then the tokens were fed to a deep
neural network. Their deep neural network consisted of three restricted Boltzmann
machine layers and one output layer. They achieved 93% accuracy.

Zhang et al.[9] used Support Vector Machine(SVM) to identify the author of source
code. They categorized their feature into four groups namely — programming layout
feature, programming style feature, programming structure feature and programming
logic feature. They solved the problem in the domain of the multi-class classification
problem and used sequential minimal optimization (SMO) as the classifier for SVM.
Their datasets consisted of source codes from github.com and planetsourcecode.com

and achieved 98% and 80% accuracy respectively.

23

Chapter 4

Author Identification of Source
Codes Written by Multiple
Authors

Our designed author identification approach is composed of four phases. Firstly,
source code metrics will be extracted from the source codes in the training set. The
extracted metric-values are then converted to feature vectors. Secondly, these feature
vectors are fed to five individual base classifiers along with corresponding class-labels
to train the base classifiers the author signatures. In the case of open source contribu-
tion, class-label means the owner of the source code and in case of a group of authors,
the whole group is considered as the class label. By author signature, the coding style
of a particular class-label is meant. Caruana[l2] showed that in general for classifi-
cation problem random forest, deep neural network, decision tree and support vector
machine are the top four algorithms. Hence our chosen classifiers are the deep neural
network(DNN), random forest with CART decision trees[20], random forest with C4.5
decision trees[21], C-support vector machine and v-support vector machine. Each of
the random forests has 100 decision trees built with the corresponding algorithm.

Thirdly, each of the classifiers outputs the posterior class-probability according to

24

their predictions. These outputs are called meta-features. Meta-features are used
as the input for a meta-classifier. Then the meta-classifier is trained based on the
meta-features and output. This approach is known as stacking ensemble. Another
deep neural network is used as the meta-classifier. Figure 4.1 shows a block diagram

of the architecture of the stacking ensemble method we have designed. Finally, to

CART 2

CART 100 C4.5 100

Figure 4.1: Block diagram of the architecture of the stacking ensemble method

identify the author of a new source code, that is from the test set, the same metrics
are extracted from the test source code. These extracted metrics, after converting
into feature vectors, are fed to the meta-classifier via the base classifiers. Using the
experience from the training, the meta-classifier along with the base classifiers pre-
dicts the class labels of the test source codes. Figure 4.2 shows the block diagram of
the proposed approach for author identification of source codes written by multiple
authors.

In the following sections, the building blocks of the author identification approach

25

Training
Source Codes

Feature
Extractor

Extracted
Features

Deep Neural Random Random

DNN Meta RF-CART Meta | RF-C4.5 Meta C-SVM Meta v-SVM Meta
Features Features Features Features Features

Meta Classifier

Trained Model

Figure 4.2: Block diagram of proposed author identification approach

are described.

4.1 Dataset

Some careful considerations are needed while choosing the dataset. Data must be
collected from a diverse population of programmers and should provide enough infor-
mation about the authors so that a clear distinction can be computed from author to
author and valid comparison of their programming style can be made. In addition,
the dataset must be close to real-world data as well as open for academic study|8§].
In our study, we generated our dataset based on open source codes from github.com.
All the source codes have a permissive license like MIT or BSD. The dataset con-
tains 6063 python source codes from 8 authors/author groups which are considered
as individual classes. Each source code contains roughly 226 lines on average. Source
codes of each author are roughly split into 2:1 ratio to make the training and testing

set. The training set contains 4034 files and the test set contains 2039 source codes.

26

Each class label consists of authors and contributors. By author, we mean the
true owner of the projects. This can be a single author or a group of authors. By
contributors, we mean a group of people who are not the owner of the project but
willingly contributes to the project by writing or editing a segment of it. In general,
the number of lines of code written or edited by authors is far greater than the lines
of code written or edited by contributors. On the contrast, contributors generally
out-number the authors. The number of authors and the number of contributors per

class-label is listed in table 4.1.

Table 4.1: Number of authors and contributors for each class

Class Label Number of Authors | Number of Contributors
Azure 3 136

GoogleCloudPlatform | 33 820

StackStorm 2 147

dimagi 2 101

enthought 9 224

fp7-ofelia 1 4

freenas 2 126

sympy 2 712

4.2 Metric Extraction

Previously, Shevertalov, Lange, Bandara, and Zhang[8, 9, 11, 15] used source code
metrics for author identification. From a set of probable code metrics, Lange selected
the optimal set of code metrics using the genetic algorithm. Bandara used almost
the same set of source code metrics. We used the same set of metrics for our author
identification approach only except the access modifier metric. The access modifier

feature is present only a limited number of programming languages and makes the

27

whole system language dependent. Table 4.2 shows the set of metrics to be used and

corresponding descriptions.

Table 4.2: Set of code metrics and descriptions

Metric Name

Metric Description

Line Length Calculator

This metric measures the number of characters in one
source code line.

Line Words Calculator

This metric measures the number of words in one source
code line.

Comments Frequency
Calculator

This metric calculates the relative frequency of line com-
ment, block comment and optionally doc-comment used
by the programmers.

Identifiers Length
Calculator

This metric calculates the length of each identifier of pro-
grams.

Inline Space-Tab Calculator

This metric calculates the whitespaces that occur on the
interior areas of non-whitespace lines.

Trail Space-Tab Calculator

This metric measures the whitespace and tab occurrence
at the end of each non-whitespace line.

Indent Space-Tab
Calculator

This metric calculates the indentation whitespaces used
at the beginning of each non-whitespace line.

Underscores Calculator

This metric measures the number of underscore charac-
ters used in identifiers.

The number of extracted metrics is not consistent from author to author.

For

example, say a source code has 200 lines. So it will have 200 entries for line length

metric. On the other hand, another source code has 500 lines. So it will have 500

entries for line length metric. However, the neural network requires to have a fixed

input size. So, we converted the extracted source code metrics to a form that can be

fed to a neural network. At first, we performed outlier analysis for each of the metrics

and fed them to the base classifiers. We determined the IQQR for each of the code

metrics. Metrics outside of range (@1 — 1.5I/QR, Q3 + 1.5]/QR) are considered as an

outlier. During the outlier analysis phase, we roughly selected the following ranges

28

for the source code metrics.

e Line Length: 0 to 118

e Line Word: 0 to 18

Identifier Length: 0 to 18

Underscore Count: 0

Indentation Space-Tab: 0 to 18

Inline Space-Tab: 0 to 8

Trailing Space-Tab: 0

After that, for each source code, we counted the number of all possible metric
values. For example, for line word metric, we counted how many lines with 0 words,
how many lines with 1 word, how many lines with 2 words, and this way till lines
with 18 words and how many lines with more than 18 words for each source code.
Especially, for comments, we just counted the number of line comments and the
number of block comments. This way line length generates 120 values, line word
generated 20 values, identifier length generated 20 values, underscore count generates
2 values(0 and more than 0), indentation space-tab generates 20 values, inline space-
tab generates 10 values, trailing space tab generates 2 values(0 and more than 0), and
two values for line comment and block comment. Finally, it results a feature vector

of size 196.

4.3 Base Classifiers

There are a total of five base classifiers in our author identification system. They are
— deep neural network, random forest based on CART, random forest based on C4.5,
C-support vector machine and v-support vector machine. Each of the base classifiers

is described below.

29

4.3.1 Deep Neural Network

The DNN model used as the base classifier consists of 14 layers. Data are fed to the
DNN as batches of 32 entries. The input layer transforms each batch into a standard
normal distribution of which standard deviation is 1 and mean is 0. Then there are
eight densely connected layers, followed by a dropout layer, a densely connected layer,
a dropout layer, a densely connected layer and finally the output layer. The dropout
layers ensure that the classifier is not too biased towards training data. The output
layer has the same number of units as the number of classes. Figure 4.3 depicts the

layers and corresponding input-output sizes of DNN base classifier.

Normalization

« Input: (Nx, 196)
e Output: (Nx, 196)

Dense

« Input: (Nx, 196)
« Output: (Nx, 512)

Dense

« Input: (Nx, 512)
« Qutput: (Nx, 1024)

Dense

« Input: (Nx, 1024)
« Output: (Nx, 2048)

Dense

« Input: (Nx, 2048)
e Output: (Nx, 4096)

Dense

« Input: (Nx, 4096)
« Qutput: (Nx, 2048)

Dense:

« Input: (Nx, 2048)
« Qutput: (Nx, 1024)

Dense

« Input: (Nx, 1024)
« Output: (Nx, 512)

Dense

« Input: (Nx, 512)
« Output: (Nx, 512)

Dropout

« Input: (Nx, 512)
« Qutput: (Nx, 512)

Dense

« Input: (Nx, 512)
» Qutput: (Nx, 256)

Dropout

« Input: (Nx, 256)
« Output: (Nx, 256)

Dense

e Input: (Nx, 256)
» Output: (Nx, 128)

Output

e Input: (Nx, 128)
« Output: (Nx, 8)

Figure 4.3: Block diagram of the neural network used as base classifier

In the densely connected layers, ReL U activation function and in the output layer
softmax activation function are used. Categorical cross-entropy is chosen as the loss

function. Adam optimizer is used to optimize the network. The neural network

30

outputs posterior probability for each class.

4.3.2 Random Forest

The second base classifier is a random forest with one hundred decision trees. Clas-
sification and Regression Tree(CART)[20] algorithm is used to build the trees which
select the split node based on gini impurity.

The third base classifier is another random forest with one hundred decision trees.
Unlike the second base classifier, decision trees in the third base classifier are built
with the C4.5[21] algorithm. This algorithm chooses the split node based on the
entropy ratio.

The output of both the classifiers is the average of the predictions from the corre-
sponding decision trees. This average can be interpreted as the posterior probability

for each class.

4.3.3 Support Vector Machine

The fourth base classifier is a C-support vector classifier. It is a support vector
machine where C' is a penalty parameter for the error term.

The fifth base classifier is a v-support vector classifier. It is a support vector
machine where v is the upper bound of training error and the lower bound of the
number of support vectors.

The output of both the support vector machines is the posterior probability for

each class.

4.4 Meta Classifiers

We used another deep neural network as the meta-classifier. The outputs of the base
classifiers(meta-features) are fed to the meta-classifier to learn the mapping from the

meta-features to the actual output.

31

The building blocks of the deep neural network used as meta-classifier are depicted

in figure 4.4.

Normalization

« Input: (Nx, 40)
» Output: (Nx, 40)

Dense

« Input: (Nx, 40)
» Output: (Nx, 512)

Dense

« Input: (Nx, 512)
« Qutput: (Nx, 1024)

Dense

« Input: (Nx, 1024)
» Qutput: (Nx, 2048)

Dense

« Input: (Nx, 2048)
» Output: (Nx, 4096)

Dropout

« Input: (Nx, 4096)
» Output: (Nx, 4096)

Dense

« Input: (Nx, 4096)
« OQutput: (Nx, 2048)

Dense

« Input: (Nx, 2048)
« Qutput: (Nx, 2048)

Dropout

« Input: (Nx, 2048)
» Output: (Nx, 2048)

Dense:

« Input: (Nx, 2048)
» Qutput: (Nx, 1024)

Dense

« Input: (Nx, 1024)
» Qutput: (Nx, 1024)

Dropout

« Input: (Nx, 1024)
» Qutput: (Nx, 1024)

Dense

« Input: (Nx, 1024)
» OQutput: (Nx, 512)

Dropout

« Input: (Nx, 512)
» OQutput: (Nx, 512)

Dense

« Input: (Nx, 512)
» Qutput: (Nx, 256)

Dropout

« Input: (Nx, 256)
« Qutput: (Nx, 256)

Dense

« Input: (Nx, 256)
« Output: (Nx, 128)

Droput

« Input: (Nx, 128)
« Output: (Nx, 128)

Output

« Input: (Nx, 128)
« Qutput: (Nx, 8)

Figure 4.4: Block diagram of the neural network used as meta classifier

The neural network consists of 19 layers. Data are fed to the meta-classifier as
batches of 32 feature vector each. The first layer of the network transforms the data
into standard normal distribution. This layer is followed by eight densely connected
layers, a dropout layer, two densely connected layers, a dropout layer, a densely
connected layer, a dropout layer, a densely connected layer, a dropout layer, a densely
connected layer, a dropout layer, and finally the output layer. The output from this

output layer is the final output of our author identification system for source code

32

written by multiple authors.

The activation functions of the network are ReLU for densely connected layers
and softmaz for the output layer. The loss function used in the meta-classifier is
categorical cross-entropy. Stochastic Gradient Descent(SGD) is used as the optimizer

of the meta-classifier.

4.5 Training

We implemented our author identification system for source code written by multiple
authors in multi-class classification category. Here, a unique list of authors(or groups
of authors) of the source codes in the training set are treated as classes. The author
identification system will output its confidence for each class of being the actual class
of given source code. The actual author is expected to have the highest confidence.
The training phase of our system is divided into three phases — feature extraction
from the source codes, training the base classifiers and training the meta-classifier.
Figure 4.5 shows the steps followed in our author identification system for source code

written by multiple authors.

1. Extract code metrics from the training set

2. Convert the code metrics to feature vectors

3. For each model in {DNN, RF-CART, RF-C4.5, C-SVM, v-SVM}:
1. Train model based on the training features

4. Stack the outputs of each model to form meta features

5. Train the meta classifier based on the meta features

6. Predict the authors of unkown samples using the classifiers

Figure 4.5: Steps for training the stacking ensemble system

33

First of all, the source code metrics mentioned in table 4.2 are extracted from
source codes. Then they are converted to feature vector as mentioned in section 4.2.
These feature vectors are fed to each of the base classifiers as input.

The base classifiers run according to their own learning algorithm to learn to iden-
tify the writing style of each class. During this training phase, several configurations
of each of the base classifiers, specially DNN are used to find out which configuration
works the best for the training set.

After completing the training of each of the base models, the posterior probability
for each input in the training set is generated. This produces a 5 * |classes| sized
feature vector for each of the input feature vectors where |classes| is the number of
classes. These feature vectors are known as meta-features. Meta features are fed to
the meta-classifier along with the class labels through which the meta-classifier learns

to predict the actual class from the meta-features.

34

Chapter 5

Experimental Results

5.1 Experimental Setup

The experimental setup consists of the toolset we have used to implement our pro-

posed method and the values we have fixed for the parameters of the classifiers.

5.1.1 Toolset

While implementing our author identification system for source code written by mul-
tiple contributors, we used Keras[29] as the framework for deep neural networks and
Scikit Learn[30] as the library for general purpose machine learning. For data pre-
processing and visualization, we used numpy|31] and pandas[32] library.

First of all, we made a feature extractor that extracts the features mentioned
in table 4.2 from the source codes. Then we converted the code metrics to feature
vectors. Among the base classifiers, random forest with CART decision trees, ran-
dom forest with C4.5 decision trees, C-support vector machine and v-support vector
machine are built with Scikit Learn library. The deep neural network as the base

classifier and the deep neural network as the meta-classifier are built with Keras.

35

5.1.2 Parameters

During the experiment, we found that for both the random forests, a hundred trees
are sufficient to converge to the highest accuracy. For C-support vector machine,
the parameter C' is a penalty for the error term. For v-support vector machine, the
parameter v is an upper bound to the training error and lower bound to the number
of support vectors. We found, for particularly our problem, the optimal value for
C and v are 1.0 and 0.15 respectively. For the deep neural network as the base
classifier, the learning rate is 0.01. For the optimizer of this classifier, which is Adam,
the parameters g is 0.9 and S is 0.999. For the deep neural network as the meta-
classifier, the learning rate is 0.001. For the optimizer of this classifier, which is SGD,

the parameter momentum is 0.

5.2 Metrics

To evaluate our method for author identification of source codes written by multiple

authors, we used two metrics. These are accuracy and f1-score.

5.2.1 Accuracy

Accuracy is the ratio between the number of correctly identified samples and the

number of total samples. Mathematically,

|correctly identified samples|

accuracy =
Y |total samples|

where, | X| is the number of items in X set.

5.2.2 F1-Score

F1-score is the harmonic mean of precision and recall. Precision is the ratio between

the number of correctly identified samples for a particular class-label and the number

36

of total samples identified as of that class-label. Recall is the ratio between the
number of correctly identified samples for a particular class-label and the number of
total samples actually belongs that class-label.

As the definitions suggest, precision and recall are individually calculated for each
of the class-labels. Then these scores can be aggregated in several ways to compute
the final f1-score. In our work, we used micro averaging to compute the f1-score.
In micro averaging, the total number of correctly identified samples and the total

number of incorrectly identified samples are computed globally. Mathematically,

|correctly identified samples of class A|

recision =
b |total samples identified as of class Al

I |correctly identified samples of class A|
recall =

|total samples of class A

9 -1
1-score =
f (precision‘l + Tecall—l)

where, | X| is the number of items in X set.

5.3 Results of The Base Classifiers

Table 5.1 contains the accuracies for the five base models of our stacking ensemble
method. From the table, we can see that the highest accuracy is achieved for random
forest classifiers. The accuracies of both the random forests are 83%. However, their
testing predictions match in 91.67% cases. Similarly, for support vector machines, the

prediction-match is 83.91% although the accuracy was 79% for both the classifiers.

5.4 Results of The Meta Classifier

After training the meta-classifier by the meta-features, we achieved 87% accuracy.

The fl-score of our work is 0.86.

37

Table 5.1: Accuracy of the base classifiers

Classifier Name Accuracy
Deep Neural Network 82%
CART Based Random Forest 83%
Random Forest 83%
C-Support Vector Machine 79%
v-Support Vector Machine 79%

Table 5.2 shows the confusion matrix of our work. A confusion matrix is a table

describing the performance of a supervised learning algorithm. Here the row label

denotes the actual class-label and column label denotes the predicted class-label.

In the corresponding cell, the number of samples with such actual class-label and

predicted class-label is shown.

Table 5.2: The confusion matrix of for the testing dataset

Azure | Google- | Stack- | dimagi | en- fp7- freenas | sympy

Cloud- | Storm thought, ofelia

Platform
Azure 171 2 1 0 2 0 0 0
Google- | 5 253 7 3 8 2 0 2
Cloud-
Platform
Stack- 0 2 180 33 9 2 1 0
Storm
dimagi |1 2 2 383 17 17 3 8
en- 2 4 2 29 339 7 0 11
thought
fp7- 1 3 3 23 16 141 0 3
ofelia
freenas | 0 1 1 11) 2 162 3
sympy 1 1 0 8 11 3 3 117

38

Table 5.3 shows a comparison between our work and other related works. The
comparison includes the type of features, language independence, the capability of
handling multiple authorship, number of classes and the total number of source codes
used in training and testing. From the table, we can see that the recent works on
source code author identification tend to use code metrics rather than n-gram as we
did. Our chosen set of metrics is compact and still able to achieve a satisfactory
accuracy. Alongside a number of works suffer from choosing a set of metrics that are

not language independent.

Table 5.3: Comparison among the methods for source code author identification

<
S
g : :
5 i E “ §
z ’ 5T .l |5 |2 5
2 0
E & SEE |2 |@ g
= 2 | E g @ = =
) g STR|E |F& |8 S
= & AEL| =2 |z |FE <
Information retrieval | Character | Yes No | 100 1640 67%
approach[28] level
n-gram
Code metric 7 code Yes No |20 4068 55%
histogram|8] metrics
Genetic algorithm[11] | 4 code Yes No | 20 N\A 75%
metrics
Deep neural 9 code No No | 10, 10, | 1644, 93%, 93%,
network[15] metrics 8,5,9 | 780, 475, | 93%, 78%,
131, 520 | 89%
Support vector 46 code No No | 8, 53 8000, 502 | 98%, 80%
machine[9] metrics
Stacking ensemble | 8 code Yes Yes | 8 6063 87%
method metrics (group
of
authors)

39

Chapter 6

Conclusion

In this thesis, we designed a new approach for identifying the author of a source code
where the number of authors of the source codes is more than one. We used stacking
ensemble method for our author identification task. Stacking ensemble is an approach
where a number of heterogeneous base classifiers are stacked together to form a new
classifier. In general, stacking ensemble method performs better than any of its base
classifiers. The main challenge of this method is to select the base estimators from
a large number of possible combinations. Again, as it is required to train several
classifiers, each classifier needs to be fine tuned individually to produce a good final
result. On the other hand, the problem of identifying the authorship of source codes
is harder when the number of authors is more than one. Because then the writing
style of the source code is inconsistent from segment to segment.

We have designed a stacking ensemble classifier that consists of five base classifiers
and a meta-classifier. Our designed classifier is able to classify the authorship of source
codes written by multiple authors with 87% accuracy. Alongside, we have chosen a
relatively small set of code metrics that are relatively easy to compute and language

independent as well.

40

6.1 Future Direction

Although our stacking ensemble method achieved a satisfactory accuracy, this still
can be improved. Although our code metrics are language independent, we only
tested with python source codes. Future works may test on other languages and
check how the set of metrics works for other languages. Other sets of metrics can also

be examined to see how they contribute to the writing style of source codes.

41

Bibliography

1]

G. Frantzeskou, E. Stamatatos, S. Gritzalis, and S. Katsikas, “Source code au-
thor identification based on n-gram author profiles,” in Artificial Intelligence
Applications and Innovations (I. Maglogiannis, K. Karpouzis, and M. Bramer,

eds.), (Boston, MA), pp. 508-515, Springer US, 2006.

J. Kothari, M. Shevertalov, E. Stehle, and S. Mancoridis, “A probabilistic ap-
proach to source code authorship identification,” in Proceedings of International

Conference on Information Technology: New Generations, IEEE, 2007.

J. Zobel, “Uni cheats racket: A case study in plagiarism investigation,” in Pro-
ceedings of the sixth conference on Australasian computing education, vol. 30,
(Australia, Australia), pp. 357-365, Australian Computer Society, Inc. Dar-
linghurst, 2004.

G. Frantzeskou, E. Stamatatos, and S. Gritzalis, “Supporting the cybercrime
investigation process: Effective discrimination of source code authors based on
byte-level information,” in E-business and Telecommunication Networks (J. Fil-
ipe, H. Coelhas, and M. Saramago, eds.), (Berlin, Heidelberg), pp. 163-173,
Springer Berlin Heidelberg, 2007.

A. Gray, P. Sallis, and S. MacDonell, “Identified: A dictionary-based system
for extracting source code metrics for software forensics,” in Procceedings of SE:

EI&P, (Washington, DC), pp. 252-259, IEEE Computer Society Press, 1998.

42

[6]

[10]

[11]

[12]

X. Yang, G. Xu, Q. Li, Y. Guo, and M. Zhang, “Authorship attribution of
source code by using back propagation neural network based on particle swarm

optimization,” PLOS ONE, vol. 12, pp. 1-18, 11 2017.

M. F. Tennyson and F. J. Mitropoulos, “A bayesian ensemble classifier for source
code authorship attribution,” in SISAP (A. M. T. et al., ed.), vol. 8821 of LNCS,
(Switzerland), p. 265-276, Springer International Publishing, 2014.

R. C. Lange and S. Mancoridis, “Using code metric histograms and genetic algo-

"in Proceedings of

rithms to perform author identification for software forensics,’
the 9th Annual Conference on Genetic and Fvolutionary Computation, GECCO

07, (New York, NY, USA), pp. 20822089, ACM, 2007.

C. Zhang, S. Wang, J. Wu, and Z. Niu, “Authorship identification of source
codes,” in Proceedings of Asia-Pacific Web (APWeb) and Web-Age Information
Management (WAIM) Joint Conference on Web and Big Data (C. L., J. C.,
S. C., Y. X., and L. X., eds.), vol. 10366 of Lecture Notes in Computer Science,
(Cham, Switzerland), pp. 282-296, Springer, 2017.

O. Mirza and M. Joy, “Style analysis for source code plagiarism detection,” in
Proceedings of International Conference on Plagiarism across Europe and Be-

yond, (Brno, Czech Republic), pp. 53—61, 2015.

M. Shevertalov, J. Kothari, E. Stehle, and S. Mancoridis, “On the use of dis-
cretized source code metrics for author identification,” in Proceedings of 1st In-
ternational Symposium on Search Based Software Engineering (M. D. Penta and
S. Poulding, eds.), (Cumberland Lodge, Windsor, UK), pp. 69-78, IEEE Com-
puter Society, 2009.

R. Caruana, N. Karampatziakis, and A. Yessenalina, “An empirical evaluation of

Y

supervised learning in high dimensions,” in Proceedings of the 25th International

43

[18]

[19]

[20]

[21]

Conference on Machine Learning, ICML "08, (New York, NY, USA), pp. 96-103,
ACM, 2008.

A. L. Samuel, “Some studies in machine learning using the game of checkers,”

IBM Journal of Research and Development, vol. 3, pp. 210 — 229, 1959.
T. Mitchell, Machine Learning. McGraw Hill, 1997. ISBN: 0-07-042807-7.

U. Bandara and G. Wijayarathna, “Deep neural networks for source code au-
thor identification,” in Neural Information Processing (M. Lee, A. Hirose, Z.-G.
Hou, and R. M. Kil, eds.), (Berlin, Heidelberg), pp. 368-375, Springer Berlin
Heidelberg, 2013.

H. Robbins and S. Monro, “A stochastic approximation method,” Annals of

Mathematical Statistics, vol. 22, pp. 400-407, 09 1951.

D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in
Procceedings of 3rd International Conference for Learning Representations, (San

Diego), 2015.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A simple way to prevent neural networks from overfitting,” in Journal

of Machine Learning Research, vol. 15, pp. 1929-1958, 2014.

T. K. Ho, “Random decision forest,” in Proceedings of the 3rd International
Conference on Document Analysis and Recognition, (Montreal, QC), pp. 278
282, 1995.

L. Breiman, J. Friedman, C. J. Stone, and R. Olshen, Classification and Regres-
sion Trees. CRC Press, 1984.

Q. JR, C4.5: Programs for Machine Learning. San Mateo: Morgan Kaufmann,
1993.

44

[22]

[23]

[25]

[26]

[27]

[28]

[29]

[30]

J. Vert, K. Tsuda, and B. Sch 6 lkopf, A Primer on Kernel Methods. Cambridge,
MA, USA: MIT Press, 2004.

J. Wang, Q. Chen, and Y. Chen, “Rbf kernel based support vector machine
with universal approximation and its application,” in Proceedings of Advances
in Neural Networks — ISNN 2004, Lecture Notes in Computer Science, (Berlin,
Heidelberg), pp. 512-517, Springer, 2004.

R. Maclin and D. Opitz, “Popular ensemble methods: An empirical study,”
Journal Of Artificial Intelligence Research, vol. 11, pp. 169-198, 1999.

C. C. Aggarwal, Data Classification: Algorithms and Applications. Data Mining
and Knowledge Discovery Series, CRC Press, 2015.

M. Duracik, E. Krsak, and P. Hrkut, “Current trends in source code analysis,
plagiarism detection and issues of analysis big datasets,” in TRANSCOM 2017:
International scientific conference on sustainable, modern and safe transport,

vol. 192 of Elsevier: Procedia Engineering, pp. 136-141, 2017.

S. Burrows, A. Uitdenbogerd, and A. Turpin, “Comparing techniques for author-
ship attribution of source code,” Software: Practice and Ezxperience, vol. 44, 01

2014.

S. Burrows and S. Tahaghoghi, “Source code authorship attribution using n-
grams,” in Proceedings of the Twelfth Australasian Document Computing Sym-
posium (A. T. Amanda Spink and M. Wu, eds.), pp. 32-40, School of Computer

Science and Information Technology, RMIT University, 2007.
F. c. 0. Chollet et al., “Keras.” https://keras.io, 2015.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

45

D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Ma-
chine learning in P ython,” Journal of Machine Learning Research, vol. 12,

pp. 2825-2830, 2011.
[31] O. Travis E, “A guide to numpy,” 2006.

[32] W. McKinney, “Data structures for statistical computing in python,” in Proceed-
ings of the 9th Python in Science Conference (S. van der Walt and J. Millman,
eds.), pp. 51-56, 2010.

46

